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Dynamics of Solitons in Inhomogeneous 
Josephson Junctions 
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We examine the dynamics of sine-Gordon solitons in an inhomogeneous 
Josephson junction. Two types of inhomogeneity are worked out: (1) varying 
"refractive index" or dielectric constant, and (2) varying parameters in the 
nonlinear term. Simplified analytical explanations are also presented for the 
numerical results. 

1. INTRODUCTION 

Superconducting Josephson junctions (Josephson, 1962) exhibit soliton 
behavior which can be described by sine-Gordon equation [see, e.g., Pederson 
(1986), which we mainly follow in this introduction]. In this case solitons 
are quantums of magnetic flux. Their production, transmission, and storage 
as stable objects is quite feasible, and therefore very important in information 
processing systems. 

The tunneling effect of Cooper pairs across a thin insulator between 
two superconductors was predicted by Josephson (1962). If the common 
macroscopic wave function of all the electron pairs is written as 

= ~/Re i~ (1) 

the two superconductors will naturally have independent wave functions ~1 
and ~2 with uncori'elated phases d~l and dp2, unless the two superconductors 
are set near enough to each other (say less than about 30 A). The phases 
then become correlated because of Cooper pair penetration across the insula- 
tor barrier. 
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The wave functions ~1 and ~2 satisfy two coupled linear Schrrdinger 
equations (Feynman et al., 1965) 

ih---2:- = Ela l t l  "t- kXIr2 
o t  

(2) 

0~2 
i h -  = E2atr 2 -t- k ~ l  (3) 

Ot 

where Et and E2 are the ground-state energies of electrons in the two supercon- 
ductors. Here, we have assumed that the two superconductors are similar, k 
is a real coupling constant which depends on the characteristics of the junction. 
Obviously, k ~ 0 as d ~ % where d is the barrier thickness. When a static 
potential difference V is maintained between the two superconductors, an 
energy shift El - E2 = 2 e V  is developed. We can arbitrarily choose the 
reference energy at E = (El + E2)/2 = 0, and therefore El = eV and E2 = 
-eV. Equations (2) and (3) then become 

O"F1 
ih 

at 

ih-- 
at 

= eVq~l + katt2 (4) 

- -  e V g l t 2  + k~i (5) 

Using the expressions ~ l  = %/Rle i*~ and ~2 = v 'R2e  i.2 in these equations 
and separating the real and imaginary parts, we obtain 

h ORi/Ot = - 2 k ( R i R 2 )  1/2 sin dO 

h OR2/Ot = +2k(RtR2)  "2 sin dO 

h Odol/Ot = k(R21Rt) u2 cos do - e V  

h Odo2/Ot = k(RiIR2) It2 cos do + e V  

(6) 

(7) 

(8) 

(9) 

in which dO = 4)2 - do~ is the phase difference between the two wave functions. 
Let us define the quantities Jl -- ORilOt and J2 -- OR2/Ot. Here R~ and 
R2 represent electron pair densities which deviate only slightly from their 
equilibrium values Ro. We therefore have RI = R2 = Ro, and (2k/h)(Rl R2) u2 
= 2kRo/h = Jo, and therefore 

J = J0 sin dO (lO) 

according to (6) or (7). 
Equations (8) and (9) therefore yield 
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h - ~  = 2eV (11) 

We can write equation (I 1) in the form 

dq~ 
- V ( 1 2 )  

dt 

where �9 has the dimensions of  magnetic flux, and is defined according to 

q~ (13) 27 

in which q~0 = h/2e is the quantum of magnetic flux. From (10) and (13) 
we have 

q~0 J (14) q~ = ~ sin-l 

If V = 0, then (13) implies �9 = const, which is in general nonvanishing. 
This leads to a finite current density J even in the absence of an applied 
voltage. The effect is known as the dc Josephson effect. If V = Vo = 
const, �9 = Vot + q~l and (15) yields an alternating current density (ac 
Josephson effect) 

2'rr 
J = Jo sin ~00 (Vot + ~1) (15) 

Therefore, an alternating current density develops with an angular frequency 

2~rVo _ 2eVo (16) 
t o ~ -  ~0 h 

We now turn to a long Josephson junction, which consists of  two relatively 
long strips of  superconducting materials separated by a very thin dielectric 
of thickness d. It can be shown that a length element dx of  this device is 
electrically equivalent to the circuit shown in Fig. 1. Capacitance per unit 
length is 

C = K.%a (17) 
d 

Ldz l(z + d:~) 
�9 -:I • 

. . .  �9 . ~  

Fig. 1. Electrical equivalent of long Josephson junction. 
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in which K is the dielectric constant of the dielectric, eo ~- 8.854 • 10 -12 

F/m, and a is the width of the superconducting strip. Inductance per unit 
length is 

2hL + d 
L = ~ X o -  (18) 

a 

where ~o = 4~r • 10 -7 H m -1, and KL is the penetration depth of the 
superconductors. 

The following equations result from basic circuit theory: 

OV Ol 
- L (19) 

Ox Ot 

al _ c a v  4,  (20) 
Ox Ot - Jo sin 2ar @---~ 

- - =  v (21) 
Ot 

These equations can be easily combined to yield the following sine-Gordon 
equation for the phase difference: 

a% c~ a% at 2 - ~ -  + (o2 sin d~ = 0 (22) 

in which 

cj = (LC)I/2 and tOp = ~--~ j 

and (14) has been used. Note that cfltop has dimensions of length. It describes 
a length scale (called the Josephson penetration length), which when compared 
with the length of the junction determines whether a Josephson junction is 
'long' or not. Equation (22) can obviously have the kink solution [see equation 
(24) in Section 2], in which b = 1, a = to~lc~, and c ---) cj. The corresponding 
voltage V and current I can then be easily calculated using equations (20) 
and (21). The kink (antikink) describes a pulse of 2"tr ( -270  phase difference, 
corresponding to a quantum of magnetic flux accompanied by a voltage and 
current pulse. The kink (antikink) is thus called a fluxon (antifluxon) in this 
case. Any spatial variation in the dielectric constant K results in a position- 
dependent cj. This in turn affects the propagation of kinks in the junction. 
The situation can be approximated by the classical analog of a point particle 
moving in a (velocity-dependent) external potential. We will discuss this 
further in Section 3. 
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2. S I N E - G O R D O N  E Q U A T I O N  

The standard form of  the sine-Gordon equation is 

a sin bd~ (24) 
0X 2 C 2 0 t  2 

in which a and b are constants assumed to have the same sign. By using the 
change of  variables 

u = (ab)lr2x; v = ( a b ) l % t ;  or = b ~  (25) 

equation (24) becomes 

oruu - orvv = sin or (26) 

Multisoliton solutions of this equation can be obtained systematically by 
applying the B~icklund transformation (B~icldund, 1876). In this section, we 
will obtain kink solutions via an elementary separation-of-variables method 
(Lamb, 1980). Using the ansatz 

or(u, v) = 4 t a n - l  U(u)  (27) 
V(v) 

and the trigonometric identity 

4 tan(tr/4)[1 - tan2(or/4)] 
sin or = 1 + tan2(tr/4) (28) 

we obtain 

(U 2 + V 2) + - 2(U' )  2 - 2(V') 2 = V 2 - U 2 (29) 

in which the primes indicate differentiation of  the functions U and V with 
respect to their arguments. By differentiating (29) once with respect to u and 
once with respect to v, we can separate this equation into 

1 

u b '  = v:v' 
(30) 

These equations can now be easily twice integrated to yield 

(U ' )  2 = -k2U 4 + m 2 U  2 + n 2 (31) 

( V ' )  2 ~-- K2V 4 + ( m  2 - 1 ) V  2 - n 2 (32) 

in which m and n are integration constants. Solutions of these equations 
involve- - in  general--el l ipt ic functions (Steuerwald, 1936). There are a few 
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special cases which can yield simple yet important soliton solutions. Let k 
= 0, m > 1, and n = 0 in (31) and (32). These equations can immediately 
be integrated to yield U(u) = 3'1 exp(--+mu) and V(v) = 3'2 exp[-+(m 2 - l)U2v], 
in which ~/l and 3'2 are constants of integration. Therefore 

or(u, v) = 4 tan- iF  exp[•  --- (m 2 - 1)I/2v] (33) 

Note that all sign combinations are possible. Using (25) and the (+,  - )  
choice of signs, we obtain 

~b(x, t) 4 = ~ tan- i { F exp[(ab)u23'(Vo)(X - Vot)] } (34) 

which is known as the kink solution. In this equation, ~(v0) = (1 - v2/c2) - m  
and Vo = (1 - l/m2) v2. 

3. K I N K  DYNAMICS IN AN INHOMOGENEOU S MEDI UM 

In this section we examine the dynamics of sine-Gordon kinks in an 
inhomogeneous medium. The time-independent inhomogeneity can be intro- 
duced into the sine-Gordon equation in different ways. We will mention three 
ways, although only two cases will be worked out in detail. 

The first kind of inhomogeneity is introduced via a varying 'refrac- 
tive index': 

02+ nZ(x) 02+ _ 
a sin b6  (35) 

Ox z c ~ o?  

This looks like a variation in the optical refractive index of a transparent 
medium in the context of electromagnetic wave propagation. A physical 
fulfillment of equation (35) can be accomplished by an inhomogeneous 
Josephson transmission line. 

Consider equation (22). If  we let the dielectric constant K vary with x, 
we can write 

cj - (36) 
n(x) 

where 

and 

1 
- tt~o)'L" ,u--------- ~ (37) 

n(x) = [K(x) ]  tn 
(38) 
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In equation (37), Co is a constant reference capacitance corresponding to the 
dielectric constant Ko. 

The inhomogeneity of the second kind can be introduced via spatially 
varying a and b: 

02~b 1 02~b_ 
Ox 2 r Or2 a(x)  sin b(x)d~ (39) 

This kind of inhomogeneity will be discussed in detail in Section 3.2. The 
third kind of inhomogeneity is introduced via an external field X(X): 

02(b 1 02(b_ 
Ox 2 c 2 0 t  2 a sin bdp + X(X) (40) 

This case is discussed in Reinisch and Fernandez (1981) and Kaup (1984). 
It seems less interesting to us, and therefore we shall not consider it any further. 

Several interesting questions arise when the kink dynamics in an inhomo- 
geneous medium is concerned. If the kink is considered as a classical particle 
interacting with a background potential (Riazi, 1993), what would be the 
characteristics of such a potential in relation to n(x) ,  a(x),  b(x) ,  and the kink 
velocity Vk ? In what circumstances does the particle aspect fail to be adequate? 
What are the interesting features of the wave aspect, etc.? 

Although interesting analytical approximations can be worked out which 
explain some of the basic properties of the kink dynamics, a more elaborate 
picture of what is going on can only be achieved via numerical integration. 
The numerical procedure we have followed in order to carry out the integration 
is as follows. The x axis in the relevant range is divided into N divisions of 
length e. The time axis is also divided into intervals of duration ~. Using the 
standard finite-difference expressions for spatial and temporal derivatives, 
we can show that 

{~i,j+ 1 = 
~2(0"i+1, j - -  2ff i ,  j + O'i-I ,  j - -  E2ai sin(b,~ri,j)) 

E2n2 + 2ff i , j  - -  o' i , j -  1 

(41) 

where cri 4 - tr(u = ie, v = j~) ,  ai  = a(u  = iE)/ao, bi = b(u  = ir and 
ni = n(u = ir As before, (r = bomb, u = (a0b0)tr2x, and v = (aobo)lact, with 
a0 and b0 being some reference values for a and b, respectively. Equation 
(41) enables us to calculate the field configuration in a next time step, 
using its configuration at two preceding time steps. Starting from an initial 
configuration at time stepsj = 1 andj  = 2, equation (41) can be successively 
applied to calculate the kink dynamics up to any arbitrary later time. 
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3.1. I n h o m o g e n e i t y  o f  the First  Kind  

Kink dynamics in a medium with n(x) can be approximated in terms of  
a classical particle moving against a velocity-dependent potential. Consider 
a kink with initial velocity v0 incident on a potential barrier 

= j ' l .0  if x < x l  
n(x) 

l nt > 1 if x>--x~ 

Numerical results indicate that low-velocity kinks do penetrate the barrier. 
There is a threshold velocity above which kinds cannot penetrate the barrier. 
This threshold velocity depends of  course on the potential height nl. Ultrafast 
kinks cause kink-antikink pair production together with low-amplitude exci- 
tations. Examples are shown in Fig. 2 for nl = 1.02 and Vk = 0.01, 0.1, and 
0.97. The velocity dependence of  the force acting on the kink is evident also 
in Fig. 3, where a kink moves across a linearly increasing refractive index 

= f l . 0  if x < x l  
n(x) 

t 1 + c t ( x - x l )  if  x - ->xl  

The kink is observed to penetrate to a certain depth, where it is almost frozen. 
It will never come back to recover its 'potential energy.' A simple analytical 
description can be presented in the limit of  slowly varying refractive index and 
over short periods of  time. Consider the following coordinate transformations: 

.2 = x (42) 

t 
- (43) 

n(x) 

under which the sine-Gordon equation becomes 

02+ 1 02+ 
0.2 2 C 20q~ 

n ' [ O Z n ' O  _ 0 2 ] 
- -  + t - - n  - 2 0 ~ + - - n ~ +  t ~  + = a s i n b +  (44) 

in which n' = dn/dx. For the kink solution, 02+/0x 2 = a.b.O(1) and (l[c 2) 
O2+/Ot 2 = a.b.O(v2/cZ). In the limit [in'In] < <  vJc 2, we can ignore the 
bracket terms in (44) and obtain sine-Gordon equation in the (.2, t-) coordinates. 
The kink solution in the new coordinates reads 

+(.2, ~) = +(x, t) = 4 tan -I exp[(ab)U2~(Vo)(2 - v0t-)] (45) 

in which v0 is a constant. Note that in the (x, t) coordinates .2 - v j  = x - 
[voln(x)]t which corresponds to a varying kink velocity. The instantaneous 
position of the kink is obtained by solving the equation 
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Fig. 2. Kink colliding with a potential step. v~ = 0.01: kink crosses over; vk = 0.1: kink is 

reflected; v~ = 0.97: kk production together with low-amplitude waves. 

n(xk)Xk = Vot (46)  

for xk(t). The  i n s t a n t a n e o u s  acce le ra t ion  o f  the k i n k  is 

2n'(Xk) + n"(Xk)Xk 
ak(Xk, Vk) = [n(xk) + n'(Xk)Xk] 2 VoVk (47)  

T h e  po ten t i a l  ac t ing  on  the k i n k  as a resul t  o f  v a r y i n g  refract ive  i ndex  o f  
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Fig. 3. Kink moving across a medium with linearly increasing refractive index. 

the medium is clearly velocity dependent. The velocity dependence is linear 
in this approximation. This is in agreement with the numerical results. 

3.2. Inhomogeneity of the Second Kind 

This kind of inhomogeneity seems to be more interesting and viable to 
analytical description. 

Equation (39) with a and b constants possesses kink solutions having 
rest energy 

al/2 
ek(o) = 8 b3/--- ~ (48) 

and total energy 

Ek(vk) = 7(vk)Ek(O) (49) 

Let us define a reference rest energy Eo according to 

a o  ~r2 
fro = 8 b--~ (50) 

We can now write (49) in the form 

where 

Ek(vk) = Eo + T +  U (51) 

That is, we have naturally decomposed the total kink energy in a homogeneous 
medium into three parts: rest energy (Eo), kinetic energy (7), and potential 
energy (U). From (48), (50), and (52), we have 

u = Ek(0) - E0 (52) 
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Fig. 4. Kink moving across a potential slope (second kind). 

a,,2 ) 
(53) 

We can now tentatively generalize this definition to the case a = a(x) and 
b = b(x). The kink dynamics can then be well described through the conven- 
tional prescription of classical relativistic dynamics, as long as the scale over 
which the potential varies appreciably is large compared with the size of 
the kink. The force field is conservative, and common energy conservation 
arguments for a massive particle hold. 

Figure 4 shows the example of a kink moving against a potential slope. 
The kink returns to its initial position and velocity after a finite time. As a 
classical particle, the kink bypasses a potential barrier, as long as its kinetic 
energy is greater than the potential height (see Fig. 5). However, it is interest- 
ing to note that it does penetrate a potential barrier with U > T if the barrier 
is thin enough. Figure 6 shows this classical 'tunneling effect.' 
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Fig. 5. (Left) kink passing over a potential step for T > U and (right) being reflected for T < U. 
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Fig. 6. Classical tunneling of  a kink through a thin barrier with T < U. 

This effect is a result of the wave aspect of the kink and does not 
contradict the particle aspect just described, because in this case the slowly 
varying assumption for the potential breaks down. 
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